- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0005000000000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Xia, Zhengxu (5)
-
Jiang, Junchen (4)
-
Xiao, Zhujun (2)
-
Zheng, Haitao (2)
-
Arapin, Anton (1)
-
Du, Kuntai (1)
-
Jeyakumar, Jeya Vikranth (1)
-
Lee, Eun Sun (1)
-
Sandha, Sandeep Singh (1)
-
Srivastava, Mani (1)
-
Tausik, Nathan (1)
-
Wang, Haodong (1)
-
Yan, Francis Y. (1)
-
Zhang, Qizheng (1)
-
Zhao, Ben Y (1)
-
Zhao, Ben Y. (1)
-
Zhou, Yajie (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Du, Kuntai; Zhang, Qizheng; Arapin, Anton; Wang, Haodong; Xia, Zhengxu; Jiang, Junchen (, Proceedings of the 5 th MLSys Conference)
-
Xiao, Zhujun; Xia, Zhengxu; Zheng, Haitao; Zhao, Ben Y; Jiang, Junchen (, ACM/IEEE Symposium on Edge Computing (SEC))
-
Xiao, Zhujun; Xia, Zhengxu; Zheng, Haitao; Zhao, Ben Y.; Jiang, Junchen (, 2021 IEEE/ACM Symposium on Edge Computing (SEC))
-
Jeyakumar, Jeya Vikranth; Lee, Eun Sun; Xia, Zhengxu; Sandha, Sandeep Singh; Tausik, Nathan; Srivastava, Mani (, Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers)Traditional machine learning approaches for recognizing modes of transportation rely heavily on hand-crafted feature extraction methods which require domain knowledge. So, we propose a hybrid deep learning model: Deep Convolutional Bidirectional-LSTM (DCBL) which combines convolutional and bidirectional LSTM layers and is trained directly on raw sensor data to predict the transportation modes. We compare our model to the traditional machine learning approaches of training Support Vector Machines and Multilayer Perceptron models on extracted features. In our experiments, DCBL performs better than the feature selection methods in terms of accuracy and simplifies the data processing pipeline. The models are trained on the Sussex-Huawei Locomotion-Transportation (SHL) dataset. The submission of our team, Vahan, to SHL recognition challenge uses an ensemble of DCBL models trained on raw data using the different combination of sensors and window sizes and achieved an F1-score of 0.96 on our test data.more » « less
An official website of the United States government

Full Text Available